342 research outputs found

    In situ decolorization monitoring of textile dyes for an optimized UV-LED/TiO2 reactor

    Get PDF
    Heterogeneous photocatalysis, using photocatalysts in suspension to eliminate diverse contaminants, including textile wastewater, has several advantages. Nevertheless, current absorbance and decolorization measurements imply sample acquisition by extraction at a fixed rate with consequent photocatalyst removal. This study presents online monitoring for the decolorization of six azo dyes, Orange PX-2R (OP2), Remazol Black B133 (RB), Procion Crimson H-EXL (PC), Procion Navy H-EXL (PN), Procion Blue H-EXL (PB), and Procion Yellow H-EXL (PY), analyzing the spectrum measured in situ by using the light scattering provided by the photocatalyst in suspension. The results obtained have corroborated the feasibility of obtaining absorbance and decolorization measurements, avoiding disturbances in the process due to a decrease in the volume in the reactor.Peer ReviewedPostprint (published version

    A comprehensive analysis of SVPWM for a Five-phase VSI based on SiC devices applied to motor drives

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a comprehensive analysis of SVPWM for a five-phase VSI based on SiC devices applied to motor drives. The modulation techniques analyzed use medium and large vectors to reach the reference vector. The 2L SVPWM uses two large space vectors, and the generated output signal contain low frequency harmonics. 2L+2M SVPWM uses two large and two medium space vectors. This technique provides good power loss distribution. 4L SVPWM works with the activation of four large space vectors. This modulation is able to generate low common-mode voltage. The performance and main features are analyzed using Matlab/Simulink and PLECS blockset software. Power losses, total harmonic distortion and common-mode voltage are compared and evaluated.Postprint (author's final draft

    Optimal design of a three-phase AFPM for in-wheel electrical traction

    Get PDF
    Sinusoidally fed permanent magnet synchronous motors (PMSM) fulfill the special features required for traction motors to be applied in electric vehicles (EV). Among them, axial flux permanent magnet (AFPM) synchronous motors are especially suited for in-wheel applications. Electric motors used in such applications must meet two main requirements, i.e. high power density and fault tolerance. This paper deals with the optimal design of an AFPM for in-wheel applications used to drive an electrical scooter. The single-objective optimization process carried out in this paper is based on designing the AFPM to obtain an optimized power density while ensuring appropriate fault tolerance requirements. For this purpose a set of analytical equations are applied to obtain the geometrical, electric and mechanical parameters of the optimized AFPM and several design restrictions are applied to ensure fault tolerance capability. The optimization process is based on a genetic algorithm and two more constrained nonlinear optimization algorithms in which the objective function is the power density. Comparisons with available data found in the technical bibliography show the appropriateness of the approach developed in this work.Postprint (published version

    Analysis of power converters with devices of SiC for applications in electric traction systems

    Get PDF
    This article presents the analysis of two topologies of power converters. Voltage Source Inverter (VSI) and Current Source Inverter (CSI) proposals for traction system applications, these topologies are implemented with silicon carbide devices. The use of SiC semiconductors allow working at high switching frequency (100KHz), increase the working temperature range and decreasing power losses during conduction and activation of the semiconductors. The objective is analyze these topologies and select the one that provides the best performance and behavior at high frequency to improve it on a electric traction system.Postprint (author's final draft

    Energy management systems by means of computational intelligence algorithms

    Get PDF
    This work pretends to take advantage of powerful capabilities of computational intelligence to improve the actual features of modeling, prognosis, diagnosis and optimization of load demand for EMS. This work gives a potent complement to the rising new paradigms about renewable energies, distributed generation, micro-grids and smart grids in general, which are in focusing in the optimization or improving of how the energy is generated and not how the energy is used.Peer ReviewedPostprint (published version

    Laser Ultrasound Inspection Based on Wavelet Transform and Data Clustering for Defect Estimation in Metallic Samples

    Get PDF
    Laser-generated ultrasound is a modern non-destructive testing technique. It has been investigated over recent years as an alternative to classical ultrasonic methods, mainly in industrial maintenance and quality control procedures. In this study, the detection and reconstruction of internal defects in a metallic sample is performed by means of a time-frequency analysis of ultrasonic waves generated by a laser-induced thermal mechanism. In the proposed methodology, we used wavelet transform due to its multi-resolution time frequency characteristics. In order to isolate and estimate the corresponding time of flight of eventual ultrasonic echoes related to internal defects, a density-based spatial clustering was applied to the resulting time frequency maps. Using the laser scan beam’s position, the ultrasonic transducer’s location and the echoes’ arrival times were determined, the estimation of the defect’s position was carried out afterwards. Finally, clustering algorithms were applied to the resulting geometric solutions from the set of the laser scan points which was proposed to obtain a two-dimensional projection of the defect outline over the scan plane. The study demonstrates that the proposed method of wavelet transform ultrasonic imaging can be effectively applied to detect and size internal defects without any reference information, which represents a valuable outcome for various applications in the industry. View Full-TextPeer ReviewedPostprint (published version

    Multiphase PMSM and PMaSynRM flux map model with space harmonics and multiple plane cross harmonic saturation

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Multiphase Synchronous Machines vary in rotor construction and winding distribution leading to non-sinusoidal inductances along the rotor periphery. Moreover, saturation and cross-saturation effects make the precise modeling a complex task. This paper proposes a general model of multi-phase magnet-excited synchronous machines considering multi-dimensional space modeling and revealing cross-harmonic saturation. The models can predict multiphase motor behavior in any transient state, including startup. They are based on flux maps obtained from static 2D Finite-Element (FE) analysis. FE validations have been performed to confirm authenticity of the dynamic models of multiphase PMaSynRMs. Very close to FE precision is guaranteed while computation time is incomparably lower.Postprint (author's final draft

    A methodology for energy prediction and optimization of a system based on the Energy Hub Concept using Particle Swarms

    Get PDF
    In this paper, a methodology for the energy prediction for the different consumptions of a system based in the Energy Hub concept is presented. The methodology that has been used for the energy prediction is based on an Adaptive Neuro-Fuzzy Inference System. An optimization method based on Particle Swarms has been used to minimize the energy cost of a system with multiple sources such as, photovoltaic, electrical grid and natural gas.Peer ReviewedPostprint (author's final draft

    Healthy and open phase PMaSynRM model based on virtual reluctance concept

    Get PDF
    © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The trend in the industrial power electronics electrical drives is to reach high power density and high efficiency in variable load conditions at cost-effective unwasteful designs. Currently, motors with permanent magnets (such as IPMSM and PMaSynRM) are of great interest because of compactness, low losses, and high torque capability. The performance of a drive system can be predicted with a motor electromagnetic authentic nonlinear model. In this paper, a novel, fast, and precise motor model of PMaSynRM based on virtual reluctance (VR) is proposed. It takes into account the cross saturation, winding distribution, space harmonics, slotting effect, and stepped skewing. The virtual reluctances are identified by finite element analysis (FEA) and implemented in the time-stepping simulation. The flux inversion is not required. The proposed concept is useful in the rotating field or phase quantities (for open phase simulation). The model is also discretized for SiL and HiL applications. Finally, the validation in FEA and experimental setup was performed.This work was supported in part by Spanish Ministry of Economy and Competitiveness under TRA2016-80472-R Research Project and Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya under 2017SGR967.Peer ReviewedPostprint (author's final draft
    • …
    corecore